1、非線性!!!!
邏輯回歸屬于廣義線性模型,表達(dá)能力有限,單變量離散化為N個(gè)后,每個(gè)變量有單獨(dú)的權(quán)重,相當(dāng)于為模型引入了非線性,能夠提高模型表達(dá)力,加大擬合, 離散特征的增加和減少都很容易,易于模型的快速迭代。
2、 速度快!速度快!速度快!
稀疏向量?jī)?nèi)積乘法運(yùn)算速度快,計(jì)算結(jié)果方便存儲(chǔ),容易擴(kuò)展。
3、魯棒性!魯棒性!魯棒性!
離散化后的特征對(duì)異常數(shù)據(jù)有很強(qiáng)的魯棒性:比如一個(gè)特征是年齡>30是1,否則0。如果特征沒(méi)有離散化,一個(gè)異常數(shù)據(jù)“年齡300歲”會(huì)給模型造成很大的干擾。
4、方便交叉與特征組合
離散化后可以進(jìn)行特征交叉,由M+N個(gè)變量變?yōu)镸*N個(gè)變量,進(jìn)一步引入非線性,提升表達(dá)能力。
5、穩(wěn)定性
特征離散化后,模型會(huì)更穩(wěn)定,比如如果對(duì)用戶年齡離散化,20-30作為一個(gè)區(qū)間,不會(huì)因?yàn)橐粋€(gè)用戶年齡長(zhǎng)了一歲就變成一個(gè)完全不同的人。當(dāng)然處于區(qū)間相鄰處的樣本會(huì)剛好相反,所以怎么劃分區(qū)間是門學(xué)問(wèn)。
6、簡(jiǎn)化模型
特征離散化以后,起到了簡(jiǎn)化了邏輯回歸模型的作用,降低了模型過(guò)擬合的風(fēng)險(xiǎn)。