一、什么是拉普拉斯平滑
拉普拉斯平滑是樸素貝葉斯分類器中一種常用的平滑方法,它通過為每個(gè)特征的計(jì)算增加一個(gè)正數(shù)值來避免出現(xiàn)概率為0的情況,從而提高了分類器的準(zhǔn)確性和可靠性。
一般情況下,在樸素貝葉斯分類器中,計(jì)算某個(gè)特征的條件概率值時(shí),都會遇到特征值在訓(xùn)練集中未出現(xiàn)的情況,此時(shí),如果直接根據(jù)頻數(shù)統(tǒng)計(jì),則估計(jì)值將為0,這一現(xiàn)象我們稱之為“零概率問題”。拉普拉斯平滑的本質(zhì)就在于對這種情況的處理。
def laplace_smoothing_classify(word_list, feature_dict, p_class1, p_class0): p1 = sum(word_list * p_class1) + np.log(1 / 2) p0 = sum(word_list * p_class0) + np.log(1 / 2) if p1 > p0: return 1 else: return 0
二、拉普拉斯平滑的實(shí)現(xiàn)原理
拉普拉斯平滑的核心思想是為計(jì)算樣本特征的條件概率值增加一個(gè)正數(shù)項(xiàng),它的具體計(jì)算方式如下:
1)在所有樣本中,特征值為m的特征出現(xiàn)的次數(shù)為cm; 2)該特征總共出現(xiàn)的次數(shù)為N; 3)特征m的條件概率值為$$ P(m|c)=\frac{c_m+1}{N+k} $$ 其中k代表特征取值的種數(shù),這個(gè)值越大,相應(yīng)的拉普拉斯平滑所增加的概率值也就越小。#拉普拉斯平滑實(shí)現(xiàn) class LaplaceSmoothing: def __init__(self, k, classes): self.k = k self.classes = classes # 計(jì)算特征值在每個(gè)類別中的出現(xiàn)次數(shù) def get_feature_count_by_class(self, features, labels): feature_dict = {} count_dict = {} for i in range(len(features)): feature = features[i] label = labels[i] if label not in feature_dict: feature_dict[label] = {} for j in range(len(feature)): if j not in feature_dict[label]: feature_dict[label][j] = {} if feature[j] not in feature_dict[label][j]: feature_dict[label][j][feature[j]] = 1 else: feature_dict[label][j][feature[j]] += 1 for label in feature_dict: count_dict[label] = {} for feature_index in feature_dict[label]: count_dict[label][feature_index] = len(feature_dict[label][feature_index]) return count_dict # 計(jì)算所有特征值出現(xiàn)的次數(shù) def get_feature_count(self, features): feature_count = {} for feature in features: for i in range(len(feature)): feature_count[i] = feature_count.get(i, {}) feature_count[i][feature[i]] = feature_count[i].get(feature[i], 0) + 1 return feature_count # 計(jì)算類別的先驗(yàn)概率 def get_prior_prob(self, labels): prior_dict = dict((label, math.log(float(len(labels))/float(labels.count(label)))) for label in self.classes) return prior_dict # 計(jì)算條件概率 def get_condition_prob(self, features, labels): feature_count_by_class = self.get_feature_count_by_class(features, labels) feature_count = self.get_feature_count(features) condition_dict = {} for label in self.classes: condition_dict[label] = {} for feature_idx in feature_count: feature_value_dict = feature_count_by_class[label].get(feature_idx, {}) feature_value_count = feature_count[feature_idx].get(features[0][feature_idx], 0) feature_value_count += self.k # 添加拉普拉斯平滑項(xiàng) condition_dict[label][feature_idx] = {} for feature_value in feature_count[feature_idx]: count = feature_value_dict.get(feature_value, 0) + self.k condition_dict[label][feature_idx][feature_value] = math.log(float(count)/float(feature_value_count)) return condition_dict
三、拉普拉斯平滑的優(yōu)缺點(diǎn)
1)優(yōu)點(diǎn):拉普拉斯平滑能夠有效地避免“零概率問題”,克服了樸素貝葉斯分類器因無法處理該問題而出現(xiàn)的諸多缺陷,同時(shí)具有簡單易懂、易于實(shí)現(xiàn)的特點(diǎn);
2)缺點(diǎn):在k取值不合適的情況下,拉普拉斯平滑的效果可能會適得其反,因此在使用時(shí)需要謹(jǐn)慎選擇和調(diào)整;此外,當(dāng)特征值數(shù)量過多時(shí),拉普拉斯平滑時(shí)間和空間上的消耗也會逐漸增大。四、拉普拉斯平滑的應(yīng)用場景
由于拉普拉斯平滑基于樸素貝葉斯分類器,因此適用于文本分類、垃圾郵件識別、情感分析等自然語言處理場景,也可以應(yīng)用于推薦系統(tǒng)、數(shù)據(jù)挖掘等領(lǐng)域。
五、總結(jié)
本文詳細(xì)介紹了拉普拉斯平滑的原理、實(shí)現(xiàn)方法及其優(yōu)缺點(diǎn),同時(shí)探討了它的應(yīng)用場景。作為樸素貝葉斯分類器中常用的平滑技術(shù),拉普拉斯平滑具有簡單易懂、易于實(shí)現(xiàn)、有效避免零概率問題、適用于多種場景等優(yōu)點(diǎn),但需要注意k值的調(diào)整和特征值數(shù)量的消耗。