麻豆黑色丝袜jk制服福利网站-麻豆精品传媒视频观看-麻豆精品传媒一二三区在线视频-麻豆精选传媒4区2021-在线视频99-在线视频a

千鋒教育-做有情懷、有良心、有品質的職業教育機構

手機站
千鋒教育

千鋒學習站 | 隨時隨地免費學

千鋒教育

掃一掃進入千鋒手機站

領取全套視頻
千鋒教育

關注千鋒學習站小程序
隨時隨地免費學習課程

當前位置:首頁  >  技術干貨  > 兩個Dataframe相減

兩個Dataframe相減

來源:千鋒教育
發布人:xqq
時間: 2023-11-22 18:24:47 1700648687

一、相減的基本概念

在Pandas中,兩個Dataframe相減是指通過一個Dataframe減去另一個Dataframe中的相應值,從而得到兩個Dataframe之間的差異。在實際應用中,常常需要使用相減功能來比較兩個數據集之間的差異,以便更好地發現問題和提高數據分析的質量。

二、代碼實現

我們可以通過Pandas庫中的sub()函數將兩個Dataframe進行相減。下面是一個示例:


import pandas as pd

df1 = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]})
df2 = pd.DataFrame({'A':[1,2,3], 'B':[1,2,3], 'C':[1,2,3]})

df_diff = df1.sub(df2)
print(df_diff)

在上述示例中,我們創建了兩個Dataframe:df1和df2。接著我們使用sub()函數,將df2從df1中減去,然后將結果賦值給變量df_diff。最后,我們打印出來結果。

三、數據類型的匹配

在兩個Dataframe進行相減的時候,需要注意數據類型的匹配問題。如果兩個Dataframe中列的數據類型不一致,那么在進行相減操作時,可能會出現一些問題,比如NaN值、特殊字符等。因此,在進行相減操作之前,需要保證兩個Dataframe中的數據類型是匹配的。下面是一個數據類型不匹配的示例:


import pandas as pd

df1 = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]})
df2 = pd.DataFrame({'A':[1.0,2.0,3.0], 'B':[1,2,3], 'C':[1,2,3]})

df_diff = df1.sub(df2)
print(df_diff)

在上述示例中,我們創建了兩個Dataframe:df1和df2。不同的是,df2中的列A的數據類型是float,而df1中的列A的數據類型是int。因此,在進行相減操作時,可能會出現一些問題,比如NaN值。運行上述代碼,會得到以下結果:


     A    B    C
0  0.0  3.0  6.0
1  0.0  3.0  6.0
2  0.0  3.0  6.0

可以看到,相減操作中的列A上都出現了NaN值,這是由于列A的數據類型不匹配導致的。

四、缺失值的處理

在兩個Dataframe進行相減的時候,可能會存在缺失值的情況。如果兩個Dataframe中的某些值缺失,那么在進行相減時,結果可能會出現NaN值。因此,在進行相減操作之前,需要檢查是否存在缺失值,并且需要根據業務需要,對缺失值進行適當的處理。下面是一個存在缺失值的示例:


import pandas as pd
import numpy as np

df1 = pd.DataFrame({'A':[1,2,np.nan], 'B':[4,5,6], 'C':[7,8,9]})
df2 = pd.DataFrame({'A':[1,2,3], 'B':[1,2,3], 'C':[1,2,3]})

df_diff = df1.sub(df2)
print(df_diff)

在上述示例中,我們創建了兩個Dataframe:df1和df2。不同的是,df1中的第三行的值是NaN。因此,在進行相減操作時,可能會出現NaN值。運行上述代碼,會得到以下結果:


     A    B    C
0  0.0  3.0  6.0
1  0.0  3.0  6.0
2  NaN  NaN  NaN

可以看到,在相減操作中出現了NaN值,這是由于df1中存在缺失值導致的。

五、數據格式的轉換

在兩個Dataframe進行相減的時候,需要注意數據格式的轉換問題。比如,如果某個Dataframe中的數據格式是字符串類型,而另一個Dataframe中的數據格式是數值類型,那么在進行相減時,可能會出現一些問題。因此,在進行相減操作之前,需要對數據進行適當的格式轉換。下面是一個數據格式不一致的示例:


import pandas as pd

df1 = pd.DataFrame({'A':[1,2,3], 'B':['4','5','6'], 'C':[7,8,9]})
df2 = pd.DataFrame({'A':[1,2,3], 'B':[1,2,3], 'C':[1,2,3]})

df1['B'] = df1['B'].astype('int')

df_diff = df1.sub(df2)
print(df_diff)

在上述示例中,我們創建了兩個Dataframe:df1和df2。不同的是,df1中的列B的數據類型是字符串類型,而df2中的列B的數據類型是數值類型。因此,在進行相減操作之前,我們需要對df1中的列B進行格式轉換,將其轉換為數值類型。運行上述代碼,會得到以下結果:


   A  B   C
0  0  3   6
1  0  3   6
2  0  3   6

可以看到,相減操作中的列B上沒有出現NaN值。這是由于在相減操作之前,我們對df1中的列B進行了格式轉換,將其轉換為了數值類型。

聲明:本站稿件版權均屬千鋒教育所有,未經許可不得擅自轉載。
10年以上業內強師集結,手把手帶你蛻變精英
請您保持通訊暢通,專屬學習老師24小時內將與您1V1溝通
免費領取
今日已有369人領取成功
劉同學 138****2860 剛剛成功領取
王同學 131****2015 剛剛成功領取
張同學 133****4652 剛剛成功領取
李同學 135****8607 剛剛成功領取
楊同學 132****5667 剛剛成功領取
岳同學 134****6652 剛剛成功領取
梁同學 157****2950 剛剛成功領取
劉同學 189****1015 剛剛成功領取
張同學 155****4678 剛剛成功領取
鄒同學 139****2907 剛剛成功領取
董同學 138****2867 剛剛成功領取
周同學 136****3602 剛剛成功領取
相關推薦HOT
主站蜘蛛池模板: 免费看欧美一级特黄a大片| 免费看的黄色大片| 爱搞搞视频| 韩国三级一区| 日韩不卡在线播放| 欧美日本免费| 色哟哟视频在线| 男人和女人差差差很疼30分| 中文japanese在线播放| 波多野结衣护士系列播放| av线上观看| 波多野结衣教师在线| 无翼乌全彩之大雄医生| 2021韩国三级理论电影网站| 在线视频一二三区2021不卡 | 蜜桃成熟时2005| 四虎影视永久地址www成人| 中国内地毛片免费高清| 美美女高清毛片视频免费观看 | 男的把j放进女人下面视频免费| 免费一级在线观| a级毛片视频免费观看| 向日葵app看片视频| 足本玉蒲团在线观看| 日韩欧美一区黑人vs日本人| 日本女同按摩| 伊人影院蕉久| 免费观看黄网站| 欧美一级片手机在线观看| 免费人成在线观看网站品爱网日本| 国产精品久久久久久久久齐齐| 日本午夜免费福利视频| 中文在线观看永久免费| 免费羞羞视频网站| 免费观看性欧美大片无片| 日韩电影毛片| 男女下面一进一出无遮挡se| 你看桌子上都是你流的| 一边摸一边爽一边叫床视频| 污网站视频在线观看| 男男毛片|