麻豆黑色丝袜jk制服福利网站-麻豆精品传媒视频观看-麻豆精品传媒一二三区在线视频-麻豆精选传媒4区2021-在线视频99-在线视频a

千鋒教育-做有情懷、有良心、有品質的職業教育機構

手機站
千鋒教育

千鋒學習站 | 隨時隨地免費學

千鋒教育

掃一掃進入千鋒手機站

領取全套視頻
千鋒教育

關注千鋒學習站小程序
隨時隨地免費學習課程

當前位置:首頁  >  技術干貨  > 兩個Dataframe相減

兩個Dataframe相減

來源:千鋒教育
發布人:xqq
時間: 2023-11-22 18:24:47 1700648687

一、相減的基本概念

在Pandas中,兩個Dataframe相減是指通過一個Dataframe減去另一個Dataframe中的相應值,從而得到兩個Dataframe之間的差異。在實際應用中,常常需要使用相減功能來比較兩個數據集之間的差異,以便更好地發現問題和提高數據分析的質量。

二、代碼實現

我們可以通過Pandas庫中的sub()函數將兩個Dataframe進行相減。下面是一個示例:


import pandas as pd

df1 = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]})
df2 = pd.DataFrame({'A':[1,2,3], 'B':[1,2,3], 'C':[1,2,3]})

df_diff = df1.sub(df2)
print(df_diff)

在上述示例中,我們創建了兩個Dataframe:df1和df2。接著我們使用sub()函數,將df2從df1中減去,然后將結果賦值給變量df_diff。最后,我們打印出來結果。

三、數據類型的匹配

在兩個Dataframe進行相減的時候,需要注意數據類型的匹配問題。如果兩個Dataframe中列的數據類型不一致,那么在進行相減操作時,可能會出現一些問題,比如NaN值、特殊字符等。因此,在進行相減操作之前,需要保證兩個Dataframe中的數據類型是匹配的。下面是一個數據類型不匹配的示例:


import pandas as pd

df1 = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]})
df2 = pd.DataFrame({'A':[1.0,2.0,3.0], 'B':[1,2,3], 'C':[1,2,3]})

df_diff = df1.sub(df2)
print(df_diff)

在上述示例中,我們創建了兩個Dataframe:df1和df2。不同的是,df2中的列A的數據類型是float,而df1中的列A的數據類型是int。因此,在進行相減操作時,可能會出現一些問題,比如NaN值。運行上述代碼,會得到以下結果:


     A    B    C
0  0.0  3.0  6.0
1  0.0  3.0  6.0
2  0.0  3.0  6.0

可以看到,相減操作中的列A上都出現了NaN值,這是由于列A的數據類型不匹配導致的。

四、缺失值的處理

在兩個Dataframe進行相減的時候,可能會存在缺失值的情況。如果兩個Dataframe中的某些值缺失,那么在進行相減時,結果可能會出現NaN值。因此,在進行相減操作之前,需要檢查是否存在缺失值,并且需要根據業務需要,對缺失值進行適當的處理。下面是一個存在缺失值的示例:


import pandas as pd
import numpy as np

df1 = pd.DataFrame({'A':[1,2,np.nan], 'B':[4,5,6], 'C':[7,8,9]})
df2 = pd.DataFrame({'A':[1,2,3], 'B':[1,2,3], 'C':[1,2,3]})

df_diff = df1.sub(df2)
print(df_diff)

在上述示例中,我們創建了兩個Dataframe:df1和df2。不同的是,df1中的第三行的值是NaN。因此,在進行相減操作時,可能會出現NaN值。運行上述代碼,會得到以下結果:


     A    B    C
0  0.0  3.0  6.0
1  0.0  3.0  6.0
2  NaN  NaN  NaN

可以看到,在相減操作中出現了NaN值,這是由于df1中存在缺失值導致的。

五、數據格式的轉換

在兩個Dataframe進行相減的時候,需要注意數據格式的轉換問題。比如,如果某個Dataframe中的數據格式是字符串類型,而另一個Dataframe中的數據格式是數值類型,那么在進行相減時,可能會出現一些問題。因此,在進行相減操作之前,需要對數據進行適當的格式轉換。下面是一個數據格式不一致的示例:


import pandas as pd

df1 = pd.DataFrame({'A':[1,2,3], 'B':['4','5','6'], 'C':[7,8,9]})
df2 = pd.DataFrame({'A':[1,2,3], 'B':[1,2,3], 'C':[1,2,3]})

df1['B'] = df1['B'].astype('int')

df_diff = df1.sub(df2)
print(df_diff)

在上述示例中,我們創建了兩個Dataframe:df1和df2。不同的是,df1中的列B的數據類型是字符串類型,而df2中的列B的數據類型是數值類型。因此,在進行相減操作之前,我們需要對df1中的列B進行格式轉換,將其轉換為數值類型。運行上述代碼,會得到以下結果:


   A  B   C
0  0  3   6
1  0  3   6
2  0  3   6

可以看到,相減操作中的列B上沒有出現NaN值。這是由于在相減操作之前,我們對df1中的列B進行了格式轉換,將其轉換為了數值類型。

聲明:本站稿件版權均屬千鋒教育所有,未經許可不得擅自轉載。
10年以上業內強師集結,手把手帶你蛻變精英
請您保持通訊暢通,專屬學習老師24小時內將與您1V1溝通
免費領取
今日已有369人領取成功
劉同學 138****2860 剛剛成功領取
王同學 131****2015 剛剛成功領取
張同學 133****4652 剛剛成功領取
李同學 135****8607 剛剛成功領取
楊同學 132****5667 剛剛成功領取
岳同學 134****6652 剛剛成功領取
梁同學 157****2950 剛剛成功領取
劉同學 189****1015 剛剛成功領取
張同學 155****4678 剛剛成功領取
鄒同學 139****2907 剛剛成功領取
董同學 138****2867 剛剛成功領取
周同學 136****3602 剛剛成功領取
相關推薦HOT
主站蜘蛛池模板: 国产精品久久久精品三级| 麻豆三级在线播放| 领导边摸边吃奶边做爽在线观看| 日韩在线一区二区三区免费视频| 好男人社区神马www| 色播成人网| 中文字幕专区高清在线观看| 久久99久久99精品| 国产精品免费看久久久| 一区在线免费| 日韩国产成人精品视频| 在线播放真实国产乱子伦| 亚洲国产精品综合久久网络| 国产99久久亚洲综合精品| 亚洲欧美国产精品第1页| 冬月枫亚洲高清在线观看| 日本女同按摩| 夜夜夜夜猛噜噜噜噜噜试看| 日本的一级片| 国产成人免费a在线资源| 国产剧情在线播放| 国产免费拔擦拔擦8x| 尾野真知子日韩专区在线| 久久依人| 动漫人物将机机插曲3d版视频| 精品国产一区二区三区免费| 麻豆国产精品va在线观看不卡 | 女人扒开| 国产一区二区福利| 日韩黄色影片| 国产欧美va欧美va香蕉在线| 天堂mv在线免费看| 国产国产人免费人成免费视频| 冬月枫在线观看| va在线观看| 777奇米四色米奇影院在线播放| 俺也去在线观看视频| 男女猛烈xx00免费视频试看 | 福利一区二区在线| 爽天天天天天天天| 欧美日韩中文字幕在线|