一、圖像二值化
圖像二值化是指將圖像上像素點的灰度值設定為0或255,即整個圖像呈現明顯的黑白效果的過程。
二、python圖像二值化處理
1.opencv簡單閾值cv2.threshold
2.opencv自適應閾值cv2.adaptiveThreshold
有兩種方法可用于計算自適應閾值:mean_c和guassian_c
3.Otsu's二值化
三、示例:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('scratch.png', 0)
# global thresholding
ret1, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# Otsu's thresholding
th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
# Otsu's thresholding
# 閾值一定要設為 0 !
ret3, th3 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# plot all the images and their histograms
images = [img, 0, th1, img, 0, th2, img, 0, th3]
titles = [
'Original Noisy Image', 'Histogram', 'Global Thresholding (v=127)',
'Original Noisy Image', 'Histogram', "Adaptive Thresholding",
'Original Noisy Image', 'Histogram', "Otsu's Thresholding"
]
# 這里使用了 pyplot 中畫直方圖的方法, plt.hist, 要注意的是它的參數是一維數組
# 所以這里使用了( numpy ) ravel 方法,將多維數組轉換成一維,也可以使用 flatten 方法
# ndarray.flat 1-D iterator over an array.
# ndarray.flatten 1-D array copy of the elements of an array in row-major order.
for i in range(3):
plt.subplot(3, 3, i * 3 + 1), plt.imshow(images[i * 3], 'gray')
plt.title(titles[i * 3]), plt.xticks([]), plt.yticks([])
plt.subplot(3, 3, i * 3 + 2), plt.hist(images[i * 3].ravel(), 256)
plt.title(titles[i * 3 + 1]), plt.xticks([]), plt.yticks([])
plt.subplot(3, 3, i * 3 + 3), plt.imshow(images[i * 3 + 2], 'gray')
plt.title(titles[i * 3 + 2]), plt.xticks([]), plt.yticks([])
plt.show()
更多關于“Python培訓”的問題,歡迎咨詢千鋒教育在線名師。千鋒教育多年辦學,課程大綱緊跟企業需求,更科學更嚴謹,每年培養泛IT人才近2萬人。不論你是零基礎還是想提升,都可以找到適合的班型,千鋒教育隨時歡迎你來試聽。