麻豆黑色丝袜jk制服福利网站-麻豆精品传媒视频观看-麻豆精品传媒一二三区在线视频-麻豆精选传媒4区2021-在线视频99-在线视频a

千鋒教育-做有情懷、有良心、有品質的職業教育機構

手機站
千鋒教育

千鋒學習站 | 隨時隨地免費學

千鋒教育

掃一掃進入千鋒手機站

領取全套視頻
千鋒教育

關注千鋒學習站小程序
隨時隨地免費學習課程

當前位置:首頁  >  應聘面試  >  Python面試題  > Python技巧|機器學習方向企業面試題(一)

Python技巧|機器學習方向企業面試題(一)

來源:千鋒教育
發布人:小千
時間: 2021-04-12 09:45:00 1618191900

      Python的機器學習方向是近年來不少大廠非常注重的方向之一,這也讓不少同學都開始轉行學習機器學習領域,這里小千為大家整理了一下大廠在機器學習方向的面試題,大家在面試前看一下說不準就能壓到寶~~

1

      1.有監督學習和無監督學習有什么區別?

      有監督學習:對具有標記的訓練樣本進行學習,以盡可能對訓練樣本集外的數據進行分類預測。(LR,SVM,BP,RF,GBDT)

      無監督學習:對未標記的樣本進行訓練學習,比發現這些樣本中的結構知識。(KMeans,DL)

      2.什么是正則化?

      正則化是針對過擬合而提出的,以為在求解模型最優的是一般優化最小的經驗風險,現在在該經驗風險上加入模型復雜度這一項(正則化項是模型參數向量的范數),并使用一個rate比率來權衡模型復雜度與以往經驗風險的權重,如果模型復雜度越高,結構化的經驗風險會越大,現在的目標就變為了結構經驗風險的最優化,可以防止模型訓練過度復雜,有效的降低過擬合的風險。奧卡姆剃刀原理,能夠很好的解釋已知數據并且十分簡單才是好的模型。

      3.什么是生成模型和判別模型?

      生成模型:由數據學習聯合概率分布P(X,Y),然后求出條件概率分布P(Y|X)作為預測的模型,即生成模型:P(Y|X)= P(X,Y)/ P(X)。(樸素貝葉斯、Kmeans)

      生成模型可以還原聯合概率分布p(X,Y),并且有較快的學習收斂速度,還可以用于隱變量的學習

      判別模型:由數據直接學習決策函數Y=f(X)或者條件概率分布P(Y|X)作為預測的模型,即判別模型。(k近鄰、決策樹、SVM)

      直接面對預測,往往準確率較高,直接對數據在各種程度上的抽象,所以可以簡化模型

      4.線性分類器與非線性分類器的區別以及優劣

      如果模型是參數的線性函數,并且存在線性分類面,那么就是線性分類器,否則不是。

      常見的線性分類器有:LR,貝葉斯分類,單層感知機、線性回歸;常見的非線性分類器:決策樹、RF、GBDT、多層感知機;SVM兩種都有(看線性核還是高斯核)

      線性分類器速度快、編程方便,但是可能擬合效果不會很好;非線性分類器編程復雜,但是效果擬合能力強;

      5.特征比數據量還大時,選擇什么樣的分類器?

      線性分類器,因為維度高的時候,數據一般在維度空間里面會比較稀疏,很有可能線性可分

      對于維度極低的特征,你是選擇線性還是非線性分類器?非線性分類器,因為低維空間可能很多特征都跑到一起了,導致線性不可分

      下面是吳恩達的見解:

      1) 如果Feature的數量很大,跟樣本數量差不多,這時候選用LR或者是Linear Kernel的SVM

      2.)如果Feature的數量比較小,樣本數量一般,不算大也不算小,選用SVM+Gaussian Kernel

      3.)如果Feature的數量比較小,而樣本數量很多,需要手工添加一些feature變成第一種情況

      6. 為什么一些機器學習模型需要對數據進行歸一化?

      歸一化化就是要把你需要處理的數據經過處理后(通過某種算法)限制在你需要的一定范圍內。

      1)歸一化后加快了梯度下降求最優解的速度。等高線變得顯得圓滑,在梯度下降進行求解時能較快的收斂。如果不做歸一化,梯度下降過程容易走之字,很難收斂甚至不能收斂

      2)把有量綱表達式變為無量綱表達式, 有可能提高精度。一些分類器需要計算樣本之間的距離(如歐氏距離),例如KNN。如果一個特征值域范圍非常大,那么距離計算就主要取決于這個特征,從而與實際情況相悖(比如這時實際情況是值域范圍小的特征更重要)

      3) 邏輯回歸等模型先驗假設數據服從正態分布。

      7.哪些機器學習算法不需要做歸一化處理?

      概率模型不需要歸一化,因為它們不關心變量的值,而是關心變量的分布和變量之間的條件概率,如決策樹、rf。而像adaboost、gbdt、xgboost、svm、lr、KNN、KMeans之類的最優化問題就需要歸一化。

      8.標準化與歸一化的區別

      簡單來說,標準化是依照特征矩陣的列處理數據,其通過求z-score的方法,將樣本的特征值轉換到同一量綱下。歸一化是依照特征矩陣的行處理數據,其目的在于樣本向量在點乘運算或其他核函數計算相似性時,擁有統一的標準,也就是說都轉化為“單位向量”。

      9.隨機森林如何處理缺失值

      方法一(na.roughfix)簡單粗暴,對于訓練集,同一個class下的數據,如果是分類變量缺失,用眾數補上,如果是連續型變量缺失,用中位數補。

      方法二(rfImpute)這個方法計算量大,至于比方法一好壞?不好判斷。先用na.roughfix補上缺失值,然后構建森林并計算proximity matrix,再回頭看缺失值,如果是分類變量,則用沒有缺失的觀測實例的proximity中的權重進行投票。如果是連續型變量,則用proximity矩陣進行加權平均的方法補缺失值。然后迭代4-6次。

      10. 如何進行特征選擇?

      特征選擇是一個重要的數據預處理過程,主要有兩個原因:一是減少特征數量、降維,使模型泛化能力更強,減少過擬合;二是增強對特征和特征值之間的理解

      常見的特征選擇方式:

      1) 去除方差較小的特征

      2.)正則化。1正則化能夠生成稀疏的模型。L2正則化的表現更加穩定,由于有用的特征往往對應系數非零。

      3)隨機森林,對于分類問題,通常采用基尼不純度或者信息增益,對于回歸問題,通常采用的是方差或者最小二乘擬合。一般不需要feature engineering、調參等繁瑣的步驟。它的兩個主要問題,1是重要的特征有可能得分很低(關聯特征問題),2是這種方法對特征變量類別多的特征越有利(偏向問題)。

      4)穩定性選擇。是一種基于二次抽樣和選擇算法相結合較新的方法,選擇算法可以是回歸、SVM或其他類似的方法。它的主要思想是在不同的數據子集和特征子集上運行特征選擇算法,不斷的重復,最終匯總特征選擇結果,比如可以統計某個特征被認為是重要特征的頻率(被選為重要特征的次數除以它所在的子集被測試的次數)。理想情況下,重要特征的得分會接近100%。稍微弱一點的特征得分會是非0的數,而最無用的特征得分將會接近于0。

      以上就是第一期Python機器學習方向的企業面試題及其答案了,最后對Python開發感興趣的同學,不妨來千鋒教育Python培訓班了解一下Python培訓課程,針對不同階段的同學準備了初級入門、高手進階、實戰項目等多種Python視頻教程,絕對能夠幫助你更好的學習Python開發。想要獲取免費Python學習路線和學習資料可以添加我們的Python技術交流qq群:790693323  加群找群管理領取即可,Python相關技術問題也可以加群解決,等你來哦~~~~

tags:
聲明:本站稿件版權均屬千鋒教育所有,未經許可不得擅自轉載。
10年以上業內強師集結,手把手帶你蛻變精英
請您保持通訊暢通,專屬學習老師24小時內將與您1V1溝通
免費領取
今日已有369人領取成功
劉同學 138****2860 剛剛成功領取
王同學 131****2015 剛剛成功領取
張同學 133****4652 剛剛成功領取
李同學 135****8607 剛剛成功領取
楊同學 132****5667 剛剛成功領取
岳同學 134****6652 剛剛成功領取
梁同學 157****2950 剛剛成功領取
劉同學 189****1015 剛剛成功領取
張同學 155****4678 剛剛成功領取
鄒同學 139****2907 剛剛成功領取
董同學 138****2867 剛剛成功領取
周同學 136****3602 剛剛成功領取
相關推薦HOT
主站蜘蛛池模板: 韩国午夜理伦三级2020韩| 亚洲欧美日韩国产精品一区| 亚洲ww| 波多野结衣变态夫妻| 国产精品成人久久久久久久| 中文字幕日韩欧美一区二区三区| 丁香狠狠色婷婷久久综合| 国产人成在线视频| 无人在线观看视频高清视频8| 中文在线√天堂| 欧美午夜伦y4480私人影院| 波多吉衣| 女人zozozo与禽交| 最近中文2019字幕第二页| 福利视频亚洲| 久久久久久久综合狠狠综合| 色哟哟精品视频在线观看| 伊人久久精品亚洲午夜| 3d动漫啪啪| 插插插插综合| 美女被吸乳老师羞羞漫画| 女人双腿搬开让男人桶| 性初第一次电影在线观看| 篠田优在线一区中文字幕| 欧美激情一区二区三区蜜桃视频| 麻豆91免费视频| 韩国v欧美v亚洲v日本v| 我被继夫添我阳道舒服男男| 国产粗话肉麻对白在线播放| 小婷的性放荡日记h交| 亚洲精品国产电影| 青青青青青免精品视频| 尤物精品视频一区二区三区| 欧美www网站| 色视频色露露永久免费观看| 亚洲免费网站观看视频| 3d动漫啪啪| 国产人妖在线播放| 国产亚洲美女精品久久久2020 | 中文字幕一区二区三区精彩视频| 猛男强攻变骚受|